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Spatial Big Data: GIS
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Spatial Big Data: Medical Imaging

Brain Atlas

Synapses
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Spatial Big Data: The Human Body Atlases at Multi-Scales ™ e

e The NIH Human BioMolecular Atlas Program (HUBMAP)
is to develop an open and global platform to map
healthy cells in the human body

e The proper functioning of organs and tissues is
dependent on the interaction, spatial organization, and
specialization of all our cells

Introduction
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Typical Spatial Objects
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Spatial Queries and Analytics QY stony Brook
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e Feature based descriptive queries |“|||||"||
— Feature based filtering or feature aggregation " I

e Spatial relationship based queries
— Spatial join, window, point-in-polygon
e Distance based queries
— Nearest neighbors, proximity estimation

e Spatial analysis and mining
— Find spatial clusters, hotspots, and anomalies
— Correlation, regression, spatial relationship B
modeling, e.g., GWR atery vessel ___ vein vessel
— Colocalization

Introduction
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e Explosion of spatial data

— Billions of geo-tagged tweets, hundreds of
millions of polygons in OSM, 37 trillions of cells
per person

- High I/O and communication cost for data processing

e Complex structures and representations
— Arbitrary shapes |
— Bifurcations in blood vessel
— Multiple levels of detail (LOD)

e High computational complexity
- Polygons/polyhedrons with many edges/faces

- Heavy duty geometric computation

Introduction



NN ——— e,
q\\\‘ Stony Brook

Spatial Database Management Systems (SDBMS) itk

Postgres Oracle MySQL DB2 MongoDB
PostGIS Oracle MySQL DB2 Spatial MongoDB
Spatial&Graph Spatial Extender Geospatial

@HS o

O oo M S Lu?)
" ’ ORACLE Y Q

Spatial

CREATE TABLE locations (name VARCHAR, coord GEOMETRY) ;

INSERT INTO locations VALUES (

e Spatial data type extensions
. . . . . ('Point', 'POINT (0 1)");,
e Multi-dimensional indexing methods INSERT INTO locations VALUES (

('Point', 'POINT(3 0))");
INSERT INTO locations VALUES (

e Limitations: limited scalability; data (ot oy
injection problem CREATE INDEX loc idx ON locations USING GIST (coord);

SELECT name FROM geometries
WHERE ST DISTANCE (coord, ‘Point(l 1)') < 2.0;

Introduction




Apache Big ("Non-Spatial”) Data Systems
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Scalable and Efficient Spatial Big Data Systems Criversiy
[ICDE21] @pEAR
Flink
[SIGSPATIAL18] ?)DPI'O
[VLDB2019] LSPEED In-Memory
vowz  [DEAL
/
[SIGSPATIAL17] SparkG|S Spark E
O
VLDB13]  Hadoop-GIS @y’ Hadoop
[ SIGSPATIALL 3] Spatial Big Data Solutions "
e
Parallel DBMS
NS PAIS
L aPixelBox
[BIGDATA20]

Introduction



Use Case: Digital Pathology
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Glass Slides Scanning Whole Slide Images  Image Analysis

e Pathology images contain rich information to understand diseases

and support diagnosis

q\\\‘ Stony Brook
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e FDA approved review and interpretation of digital surgical pathology

slides in 2017

e Analyzing pathology images can help to understand diseases and

support diagnosis, e.g.:
— Automated classification of diseases (cells or regions), CAD

— Integrative translational research by integrating phenotypic imaging data,

genetic signatures and clinical outcomes

2D spatial data management



Example: Distinguishing Characteristics in Glioblastoma
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2D spatial data management
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2D spatial data management



Spatial Data Management: Traditional Approach: Parallel gseson
SDBMS

University

Shared nothing architecture through partitioning to increase 1/0
bandwidth via parallel data access

ORDBMS with spatial data types and access methods
Comprehensive model and expressive query language

Partitioning based scale out is possible but very difficult and expensive
for many nodes

Lack of support of complex 3D data types selct .. fom table... vl
Data loading is a major bottleneck ”"
DB systems not optimized for computational
intensive operations
- | | | e | ...
IPI12, IPIL1] pationt | | utions | | puttons || postont

Database

2D spatial data management
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MapReduce Based 2D Spatial Queries: Hadoop-GIS W
e Hybrid query engine of MapReduce Data Acquisition  Storage Querying System
and database - on-demand query Q[ __QL Query Language J
engine | 2
] 5 5 Query Translation
® Data SkeW aware Spatlal data '% @ : HiveQL Parser/Spatial Query Translator :
partitioning for parallelism £ Query Engine
o o
e On-demand indexing g E: Sl T
: . . . === | heex | Query [ Boundary
® DEClaratlve Spatlal querleS (HIVESP) f Tlllﬁdsegzial ‘ Builder Procesior HandllngJ
and translation into MapReduce HDFS Hadoop

Hadoop-GIS: A High Performance Spatial Data
Warehousing System over MapReduce

Most cited paper in VLDB 2013

2D Spatial data management [VLDB13, SIGSPATIAL14, SIGSPATIAL13, SIGSPATIAL12]
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Data Parallelism: Spatial Data Partitioning W
o ~.\,_r;’,d*1“"I‘ 1 ,44 F*r—:;l‘) el
; r e Effective partitioning is critical for task parallelization
nE and load balancing
- - Data skew
IJ‘_EE 2 — Criteria: balanced distribution, granularity, overlapping,
impact of queries
e Multiple partitioning algorithms
OO N _ | ® Query cost-model based approach for partitioning
O
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On-Demand Spatial Query Engine

Data file Index buildingl ‘lﬁ?ﬁgrﬁe

Spatial database based approach

Spatial Data loading 14
data file - Rl o ;
Index building database 5 Spatial
gartition o
—— et | query
Spatial Data loading i Spatial il (Processing| resylt
o
wn

R*-Tree * _‘
Building R*-Tree Filel
Title
Spatial | Geometry Spatial
Join Refinement Measure
{ “Tree I Result File

On-demand spatial querying engine

Spatial queries
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Example: 2-way spatial join




In-Memory Spatial Query Processing with Spark QW oy o

e Hadoop comes with high I/O cost due to inter-job data movement

e Apache Spark - Industry standard for large scale in-memory processing
- Minimizes IO by keeping data in memory - if possible

- Maximizes performance by iteratively processing in-memory data
e Spatial data processing with Spark?
— Spark requires extensive tuning to avoid "Out Of Memory” exceptions

— Spark based 2D spatial querying systems often fail to complete jobs when
the data are too big




SparkGIS: Resource Aware Efficient In-Memory Spatial Data Q0 stony o
Processing

/4
e Spark based spatial data management (SIGSPATIAL'17) SparKG|S
— Take advantage of distributed memory to store and process spatial data

— Resource aware query rewriting to break a large query into a pipeline of
smaller queries based on partitions

Spatial Data
1
Distributed Storage
HDFS MongoDB Local FS Amazon S3
> _ <
Data Pre-Processing

Spatial Partitioning | Global Indexing | Data Serialization

Query
Re-Writer

Dynamic Query Rewriter

Distributed In-Memory Framework
> Apache Spark

Query Executor

A

L Local Index Spatial Operation CPU, Memory y

2D spatial data management




GPU Accelerated Spatial Queries Qo o

e Spatial cross-matching or spatial overlay
is heavily computational driven

e GPU accelerated spatial cross matching
- Massively parallel
— Cheap and highly available

e Intra-Object Level Parallelism

- S|ng|e InStrUCtiOn MU|t|p|e Data (SIMD) .io.parse.index.filter refine
Cl) 2(|)O 4CIJO 6CI)O

Runtime (ms)

90+% time on computation

GPU Accelerated Spatial Queries [VLDB12,BIGDATA20]
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Exploit SIMD Data Parallelism: Monte-Carlo ony Bro

e Monte-Carlo approach (a basic method)

e Perfect data parallelism, but high compute intensity when
polygons are relatively large

GPU Accelerated Spatial Queries
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« First apply region scheme to finish testing of large regions

IXe
 Then apply per-pixel testing for small sub-boxes
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 Preserve high data parallelism and low compute intensity

« Speed up

120X

on a single GPU (512 cores)
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3D Spatial Big Data: 3D Digital Pathology Oy

e 2D views highly depend on the locations
and angles of the cutting planes

e 3D reconstruction will preserve much
accurate spatial architecture

e Convert pixel/voxel information to 3D
micro-anatomic objects

— Explosion of 3D data and complex

objects
— High I/O and communication cos for data
processing " .
e Hadoop/Spark: distributed file systems . ',3D“s'pati_a|
for data storage, data shuffling on I/O - Data Management

a major bottleneck

3D digital pathology
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Example Query: Spatial Join/Cross-Matching W gy

e 3D spatial join: compare two sets of spatial objects

e High quality image analysis algorithms are essential to support
biomedical research and diagnosis
- Validate algorithms with human annotations
— Compare and consolidate different algorithm results

e e.d.: what are the distances and overlap ratios between the 3D objects
from two algorithms?

e Containment query is a special case
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Example Query: 3D Spatial Proximity Estimation Cniversty

e Spatial proximity estimation aims to explore inter-objects distribution in
3D space based on distances between neighboring objects

e e.g., for each cell in liver tissue, find the shortest path to its neighboring
artery vessel and the shortest path to its neighboring vein vessel, and
compute the average and standard deviation (dispersion) of the full path

artery vessel vein vessel

[ ]

' | normal liver

chronic hepatitis

cirrhosis

3D Queries
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Our Goal: a Highly Efficient and Scalable 3D Querying System:-
ISPEED

ISPEED (in-memory spatial query system for three dimensional spatial
data)

Effective progressive compression for individual 3D objects — reducing
data size

In-memory based data storage and indexing — reducing I/O and
communication

Multi-level spatial indexing — minimizing search space
On-demand structural indexing — tailored for complex objects

In-memory based 3D spatial query pipelines highly scalable on
Hadoop/Spark — achieving high scalability

LSPEED

3D Spatial Data Management [SIGSPATIALL17, VLDB18]
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« A polyhedron can be compressed to represent the original object with
lower resolution

« Querying objects with at low-resolution representation can significantly
advance the query efficiency - balance between accuracy and speed

A i B B

" HighLOD

™

E Iy B’

T Low LOD

3D Compression
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3D Compression Qs

The compression can be conducted by removing surface elements

Original mesh One vertex removed After one round After two
of decimation rounds of
decimation

Maglo, Adrien, et al. "Progressive compression of manifold
polygon meshes." Computers & Graphics 36.5 (2012): 349-
359.

3D Compression
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Progressive 3D Compression Unbversiy

» Multiple LOD polyhedrons can be stored in a single compressed

format
* The representation at a specific LOD can be retrieved directly without

decompressing all the LODs

Compressed File Header

Base Mesh L?

Face symbol list F, Residual symbol list R’,
Edge symbol list E!

Face symbol list F?, Residual symbol list R?,
Edge symbol list E?

Face symbol list F”, Residual symbol list R”,
Edge symbol list E"

Liang, Yanhui, et al. "ispeed: an efficient in-memory based spatial query system for large-
scale 3d data with complex structures.” SIGSPATIAL 2017.

3D Compression




3D Data Compression (cont’'d) QP stomy Broo

e Compression effectiveness

— Compressed size: base mesh(LOD 0): 1%; all LODs: 3%

— Computation complexity: linear with the # of vertices
e Compressed file stored in memory and replicated across all nodes
e Error from compression

— Image analysis itself comes with errors
— Spatial join query: an error of 0.54% with 90% LOD; 2.72% for 70% LOD
— In practice, such precision loss is negligible for large data

e Users have an option to trade off between accuracy and speed

3D Compression



Multi-level Spatial Indexing: Global Indexing

e Multi-level indexing

— Global space level: cuboid based partitions

- Inter-object level: R-Tree (or R*-Tree) based spatial indexing of objects

within a partition

— Intra-object level indexing (structural indexing)

I:"" ] f’ %0l jl .....
|‘| &' ?; @
I |
s TR ﬁ'T"‘T o |
e | @ea® N

o
o
o
.
--------

3D Spatial Indexing

o
o

Partitoned Cuboid Index

Parallelization unit

Ve

Object-level Index
Spatial join and NN search

Structural Index
NN and proximity estimation

N

Master Object Index
MBB and memory location of

each compressed object

Compressed 3D Obijects

q\\\‘ Stony Brook
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Structural Indexing for Complex Objects University
e Complex objects(e.g., vessels) can not be approximated as points or MBBs
for distance based queries

e Topological skeleton based: effective shape abstraction to capture the
essential topology of complex structures

e Hierarchical tree based: binary tree (axis-aligned bounding box or AABB
tree) based hierarchical representation of the MBBs which traverse from the
overall object to its subobjects

/ Q =
y 4 ! 0 S
m; b‘

original vessel hierarchical indexing (AABB tree)

.

Vs

Skeleton based indexino

3D Spatial Indexing
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Proximity Estimation QW son o

e Three-step proximity estimation query pipeline using structural
indexing and R*-tree indexing
— Use structural index (AABB) of vessels in low LOD
— Find nearest neighbor using R*-Tree to index MBBs from above structural index

— Perform accurate calculation of distances using structural index of vessels at high
LOD (very few)

e Only small number of vessels with high LOD will be retrieved

MBBs of Nuclei
e > Nearest
i -
‘ I:U g Neighbour S —_> 7
| |/ pop search - vl Q
7S Ry RIS [FRITRINY "A ’ﬂ
— () e m me ( Loadand "y AABB-tree on vessels
(9 Vessel hierarchy™ ' " [decompress geomelry} o pinh | OD and
AABB R-Tree on i data into memory | distance computation
Blood vessels On low LOD AABB nodes \_ (interactive mode) /

3D Query Engine



Performance Comparison between iSPEED and Hadoop-GIS%ny"k

10000 ; ; ; . . . 1400 : 3 ; — ‘
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: : | |Had00p—GIS 3D | 1200 - "”””’EL”””""”’EL ,,,,,,,, HadOQp'Gls BD |
| | | | | 1000 [ |
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Performance
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Performance and Accuracy vs Level of Detail (Spatial Join) Ve
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Performance



Scalability of iSPEED QP st Broo

University
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(o [ :
2000 A 400
1000 200!
0 0
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Spatial join Proximity approximation

Performance
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3D Compression Revisited Qo o

« A polyhedron can be compressed to represent the original object with
lower precision

« The compression can be conducted by removing surface elements

3D Compression
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3D Compression Revisited: Impacts of Removing a Vertex Wemeee

normal vector normal vector 4 normal vector 4
Vo
acute right obtuse
V4 I A W \/ V4 rV3 V4 /
3 3
V
\/
V1 V2 Vl V2 Vl V2
Cut of a solid part Has no impact Fill a pit
Q _>
HighLOD > LowLOD HighLOD =  LowLOD High LOD < Low LOD
Protruding vertex Recessing vertex

3D Compression



Progressive Protruding-Vertex Pruning Compression (PPVPY&ux*

e We enforce that only protruding vertices can be removed: Progressive
Protruding-Vertex Pruning Compression

e If a lower LOD of two objects intersect:

—> the higher LOD will intersect
e The distance between lower LOD is always > the distance at higher

LOD

a) Intersection b) Distance
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Filter-Progressive-Refine Spatial Querying Paradigm

MBB of datasetl ——

(" p p
Load in-memory
compressed data)
R*-tree on datasetl p N
Decompress

@\% — 4] |geometrydata | | @R
%g gé ial filteri Geometry refinement

— 5 Spatial filtering
MBB of dataset 2 R*-tree on dataset2 with MBB & spatial measurement

A\ 4

yes
filter with decompress report
_spatial to the highest — r%ﬁ?lr:rig%’t
indexing resolusion
Filter-Refine Paradigm
yes
filter with decompress report
'start » spatial to next higher > r%%%r:riter%/t
indexing resolusion

Filter-Progressive-Refine Paradigm




3DPro: Progressive 3D Spatial Data Representation and QP sty o
Queries

e Progressive Protruding-Vertex Pruning Compression
— reduce storage and I/O

e Shape aware indexing with partitioning for complex geometries like
vessels

— further address shape complexity

e Filter-progressive-refine spatial querying: early return of query results at
lower LOD

— minimize computation complexity

e Parallelized processing at both object level and intra-object level
— high throughput

e In-memory based data management
— minimize I/0
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Shape Aware Indexing with Partitioning
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GPU Acceleration for Collison Detection/Intersection W

e Inter-object parallelism: each object (cell) can be evaluated
independently, ideal for GPU

e Intra-object parallelism: each object has multiple surfaces, and distance
computation can be evaluated for each surface

= I T
GPU Cores

Object based parallelization (CPU or GPU) Surface level parallelization
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Performance QP sty o

« 44X, 13.8X, 880X, 37.4X, 264X faster

Query Datasets Test ID | Paradigm | Brute-force | Partition | AABB GPU Partition+GPU
. . FR (356.0 > 355.7 338.2 340.4 N/A
Intersect Nuclei-Nuclei | I-NN PR T 3¢ 4 35 @ 0-% N/A
FR 2264.0 2268.9 516.9 267.9 N/A
Nuclei-Nuclei | N-NN u - /
Nearest Neiehbor FPR 893.8 893.1 306.6 —( 164.1) N/A
& NucleiVessel | N-NV FR 151630.0 1649.8 | 108799.9 | 62506.1 392.8
FPR 24968.1 422.2 | 21025.6 | 10202.6-—( 172.3)
2249. . .
Nuclei-Nuclei | W-NN FR (2253.7)——2249.0 480.2 250.8 N/A
1 FPR 108.2 108.5 74.7—( 60.5 ) N/A
Within FR 25056 6451 | 11197.3 | 9827.0 196.3
Nuclei-Vessel | W-NV ' = : - :
FPR 8458.8 111.6 1948.7 | 2990.1 —(C 95.1)

Table 1: The execution time (Seconds) of tests for three queries with different datasets and accelerating approaches



GLINT: GPU-based Real-Time Contact Tracing Qo ook

« Contact tracing is an essential tool to control the spread of infectious
diseases like COVID-19

« A person is considered at risk if the person is within a specific distance
(spatial constraint) for a specific period of time (temporal constraint)

« To achieve accurate retrieval of human traces, the locations should be
sampled frequently (sub-second level) but not all archlved

o 12.7TB data with 1M people sampled per second

GLINT: a GPU-based real-time contact tracing Oz

system that can achieve sub-second response

for contact tracing data processing for a '/ .\
population at tens of millions scale ’

to ' t1 ot ts g

Other projects [SIGSPATIL2021]



GLINT QW oy e

e Dynamic indexing of moving objects using an , .
adaptive partitioning schema on GPU with very . T
low overhead I S O

e GPU optimized refining T

e Temporal evaluation with GPU-based hash table

* Minimum duration: 2 seconds

Contact hash table Valid contacts
insert 0 | (Oo-0O1,11-11)
Oo o |i H L e
B e e 1
e
: : 2
L S .
0: o o e @ 3
| g
O: oo ¢ i ‘\\.
| ‘ f 4
t | t ty oty ts

Other projects



Ongoing Project: Multi-Modal Multl-Scale Integrated Spatiafs.:.
and Image Analytics

e Understand complex relationships of cells and their functions
e Incorporate spatial knowledge into images for multi-modal predictions

Serial WSIs Registered WSIs|[ Biomarker Detection | [ ROI Exploratory Model 1 ROIs of Prognostic Value
----------- Pt i Image Feature Encoder Coavalation i )

Serial WSI Registration

—— ‘
7 ! Spatial Attention Module
: ' . 4
! - ° ° B ° o * W
5 . @ ’ .
Y ' . L
z 2 . ° ° . *
7 [
- N e =,
Tk | - (14
3 (DRI | Prediction Module > 3
SR =
g R
BEPITAL Teiaa e = Sete
G Ty VAR L s ig \ <
H S nfirme omain experts
N ”
v
)
J\
. ’
L . .
L] L -
e .
v
.
. C I
L .
L e -
L > L]
o, 3
]
oiat a

TME Histology Density M aps Biomarker Interaction Maps

.

Integrate spatial big data management, high performance computing, computational geometry,

computer vision and machine learning
Ongoing projects



Source Codes Wi
« PAIS:
Parallel spatial database for whole slide imaging
« Hadoop-GIS:
Hadoop based spatial querying system
« SparkGlIS:
Spark based spatial querying system
« ISPEED:
3D spatial querying system
« 3DPro:
Progressive 3D querying system
- |IDEAL:
Hybrid vector-raster model for complex polygons
* GLINT:

GPU-based contact tracini


http://bmidb.cs.stonybrook.edu/pais/
http://bmidb.cs.stonybrook.edu/hadoopgis/index
http://bmidb.cs.stonybrook.edu/sparkgis/index
http://bmidb.cs.stonybrook.edu/ispeed/index
http://bmidb.cs.stonybrook.edu/3dpro/index
http://bmidb.cs.stonybrook.edu/ideal/index
http://bmidb.cs.stonybrook.edu/glint/index

\
Team Qf ok

Ph.D. students (current and past)

Collaborators

Jun Kong
GSU and Emory




q\\\‘ Stony Brook

University

Questions?

fusheng.wang@stonybrook.edu

Look for students working on advanced projects,
Ph.D. student to work on big spatial big data systems
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http://www.cs.stonybrook.edu/~fuswang

