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Spatial Big Data: GIS

Satellite imagery Drones VGI Smart phone data

Long Island

New York City

GIS for public health HD map and self-driving Smart cities Future manufacturing

Introduction



Spatial Big Data: Medical Imaging

2D digital pathology 3D pathology

Brain Atlas Synapses



Spatial Big Data: The Human Body Atlases at Multi-Scales

• The NIH Human BioMolecular Atlas Program (HuBMAP) 
is to develop an open and global platform to map 
healthy cells in the human body

• The proper functioning of organs and tissues is 
dependent on the interaction, spatial organization, and 
specialization of all our cells

• There are 37 trillion cells in an adult human body

Introduction



Typical Spatial Objects

Point Line string Polygon Polyhedron

Tumor-immune borderBiomarker Cells Tumor cells 

GIS

Human body

Introduction



Spatial Queries and Analytics

• Feature based descriptive queries

– Feature based filtering or feature aggregation 

• Spatial relationship based queries 

– Spatial join, window, point-in-polygon

• Distance based queries

– Nearest neighbors, proximity estimation

• Spatial analysis and mining

– Find spatial clusters, hotspots, and anomalies

– Correlation, regression, spatial relationship 
modeling, e.g., GWR

– Colocalization

Introduction



Challenges

Introduction

• Explosion of spatial data

– Billions of geo-tagged tweets, hundreds of 
millions of polygons in OSM, 37 trillions of cells 
per person

– High I/O and communication cost for data processing 

• Complex structures and representations

– Arbitrary shapes

– Bifurcations in blood vessel

– Multiple levels of detail (LOD)

• High computational complexity

– Polygons/polyhedrons with many edges/faces

– Heavy duty geometric computation

Introduction



Spatial Database Management Systems (SDBMS)

• Spatial data type extensions

• Multi-dimensional indexing methods

• Limitations: limited scalability; data 
injection problem

Postgres Oracle MySQL DB2 MongoDB

PostGIS Oracle 

Spatial&Graph

MySQL 

Spatial

DB2 Spatial 

Extender

MongoDB 

Geospatial

Introduction



Apache Big (“Non-Spatial”) Data Systems

Introduction



Vision of Spatial Big Data Computing

Spatial Data 
Management
Novel modeling 
and accessing 

methods

High 
Performance 
Computing 
CPU/GPU 

and memory 
hierarchy

Apache Big 
Data 

Systems

Distributed 
computing
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Scalable and Efficient Spatial Big Data Systems

Hadoop

Spark

In-Memory
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Use Case: Digital Pathology

• Pathology images contain rich information to understand diseases 
and support diagnosis

• FDA approved review and interpretation of digital surgical pathology 
slides in 2017

• Analyzing pathology images can help to understand diseases and 
support diagnosis, e.g.:

– Automated classification of diseases (cells or regions), CAD

– Integrative translational research by integrating phenotypic imaging data, 
genetic signatures and clinical outcomes

Glass Slides Scanning Whole Slide Images Image Analysis

2D spatial data management



Example: Distinguishing Characteristics in Glioblastoma  

…
Molecular data

Clinical data

2D spatial data management



Spatial Queries in Pathology Imaging (2D)

WINDOWCONTAINMENTPOINT

NEAREST NEIGHBORSPATIAL JOIN DENSITY

2D spatial data management



Spatial Data Management: Traditional Approach: Parallel 
SDBMS

• Shared nothing architecture through partitioning to increase I/O 
bandwidth via parallel data access

• ORDBMS with spatial data types and access methods

• Comprehensive model and expressive query language

• Partitioning based scale out is possible but very difficult and expensive 

for many nodes

• Lack of support of complex 3D data types

• Data loading is a major bottleneck

• DB systems not optimized for computational

intensive operations

[JPI12, JPI11]

2D spatial data management



MapReduce Based 2D Spatial Queries: Hadoop-GIS

• Hybrid query engine of MapReduce 
and database – on-demand query 
engine

• Data skew aware spatial data 
partitioning for parallelism 

• On-demand indexing

• Declarative spatial queries (HiveSP)
and translation into MapReduce

2D spatial data management [VLDB13, SIGSPATIAL14, SIGSPATIAL13, SIGSPATIAL12]

Most cited paper in VLDB 2013



Data Parallelism: Spatial Data Partitioning 

• Effective partitioning is critical for task parallelization 
and load balancing

– Data skew

– Criteria: balanced distribution, granularity, overlapping, 
impact of queries

• Multiple partitioning algorithms

• Query cost-model based approach for partitioning



On-Demand Spatial Query Engine

Spatial 
database 

partition 2

Data loadingSpatial 
data file 

Spatial 
Data file

Index building

Data loading
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Result

Spatial database based approach

Example: 2-way spatial join

Title

Title

Spatial 
Join 
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Refinement

Spatial 
Measure

R*-Tree File1
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Result File

On-demand spatial querying engine
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In-Memory Spatial Query Processing with Spark

• Hadoop comes with high I/O cost due to inter-job data movement 

• Apache Spark  - Industry standard for large scale in-memory processing

– Minimizes IO by keeping data in memory – if possible

– Maximizes performance by iteratively processing in-memory data

• Spatial data processing with Spark?

– Spark requires extensive tuning to avoid “Out Of Memory” exceptions

– Spark based 2D spatial querying systems often fail to complete jobs when 
the data are too big 



SparkGIS: Resource Aware Efficient In-Memory Spatial Data 
Processing

• Spark based spatial data management (SIGSPATIAL’17)

– Take advantage of distributed memory to store and process spatial data

– Resource aware query rewriting to break a large query into a pipeline of 
smaller queries based on partitions

2D spatial data management

Query 

Re-Writer



GPU Accelerated Spatial Queries

• Spatial cross-matching or spatial overlay 
is heavily computational driven

• GPU accelerated spatial cross matching

– Massively parallel

– Cheap and highly available

• Intra-Object Level Parallelism

– Single Instruction Multiple Data (SIMD)

90+% time on computation

GPU Accelerated Spatial Queries [VLDB12,BIGDATA20]



p q

Exploit SIMD Data Parallelism: Monte-Carlo

p qp q

• Perfect data parallelism, but high compute intensity when 
polygons are relatively large

• Monte-Carlo approach (a basic method)

GPU Accelerated Spatial Queries



p qp qp q

PixelBox: Combine Box and Pixel Testing

• First apply region scheme to finish testing of large regions

• Then apply per-pixel testing for small sub-boxes

• Preserve high data parallelism and low compute intensity

• Speed up: on a single GPU (512 cores): 120X

GPU Accelerated Spatial Queries



3D Spatial Big Data: 3D Digital Pathology

3D digital pathology

• 2D views highly depend on the locations 
and angles of the cutting planes

• 3D reconstruction will preserve much 
accurate spatial architecture

• Convert pixel/voxel information to 3D 
micro-anatomic objects

– Explosion of 3D data and complex 
objects

– High I/O and communication cos for data 
processing 

• Hadoop/Spark: distributed file systems 
for data storage, data shuffling on I/O -
a major bottleneck

3D Image Analysis

3D Spatial 
Data Management 



Example Query: Spatial Join/Cross-Matching 

• 3D spatial join: compare two sets of spatial objects

• High quality image analysis algorithms are essential to support 
biomedical research and diagnosis

– Validate algorithms with human annotations

– Compare and consolidate different algorithm results

• e.g.: what are the distances and overlap ratios between the 3D objects 
from two algorithms?

• Containment query is a special case

3D Queries

2D

3D



La

C

artery vessel vein vessel

Example Query: 3D Spatial Proximity Estimation  

• Spatial proximity estimation aims to explore inter-objects distribution in 
3D space based on distances between neighboring objects

• e.g., for each cell in liver tissue, find the shortest path to its neighboring 
artery vessel and the shortest path to its neighboring vein vessel, and 
compute the average and standard deviation (dispersion) of the full path

3D Queries



Our Goal: a Highly Efficient and Scalable 3D Querying System: 
iSPEED

• iSPEED (in-memory spatial query system for three dimensional spatial 
data)

• Effective progressive compression for individual 3D objects – reducing 
data size

• In-memory based data storage and indexing – reducing I/O and 
communication

• Multi-level spatial indexing – minimizing search space

• On-demand structural indexing – tailored for complex objects

• In-memory based 3D spatial query pipelines highly scalable on 
Hadoop/Spark – achieving high scalability

3D Spatial Data Management [SIGSPATIAL17, VLDB18]



3D Compression

compression High LOD

Low LOD

• A polyhedron can be compressed to represent the original object with 
lower resolution

• Querying objects with at low-resolution representation can significantly 
advance the query efficiency – balance between accuracy and speed

A

A’

B

B’

3D Compression



Original mesh One vertex removed
After one round 

of decimation
After two 

rounds of 

decimation
Maglo, Adrien, et al. "Progressive compression of manifold 

polygon meshes." Computers & Graphics 36.5 (2012): 349-

359.

The compression can be conducted by removing surface elements

3D Compression

3D Compression



Liang, Yanhui, et al. "ispeed: an efficient in-memory based spatial query system for large-

scale 3d data with complex structures." SIGSPATIAL 2017.

• Multiple LOD polyhedrons can be stored in a single compressed 

format 

• The representation at a specific LOD can be retrieved directly without 

decompressing all the LODs

Progressive 3D Compression

3D Compression



3D Data Compression (cont’d)

• Compression effectiveness

– Compressed size: base mesh(LOD 0): 1%; all LODs: 3%

– Computation complexity: linear with the # of vertices

• Compressed file stored in memory and replicated across all nodes

• Error from compression

– Image analysis itself comes with errors

– Spatial join query: an error of 0.54% with 90% LOD; 2.72% for 70% LOD 

– In practice, such precision loss is negligible for large data

• Users have an option to trade off between accuracy and speed

3D Compression



Multi-level Spatial Indexing: Global Indexing 

• Multi-level indexing

– Global space level: cuboid based partitions

– Inter-object level: R-Tree (or R*-Tree) based spatial indexing of objects 
within a partition 

– Intra-object level indexing (structural indexing)

Partitoned Cuboid Index
Parallelization unit

Object-level Index
Spatial join and NN search

Structural Index
NN and proximity estimation
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Structural Indexing for Complex Objects

• Complex objects(e.g., vessels) can not be approximated as points or MBBs 
for distance based queries

• Topological skeleton based: effective shape abstraction to capture the 
essential topology of complex structures

• Hierarchical tree based: binary tree (axis-aligned bounding box or AABB 
tree) based hierarchical representation of the MBBs which traverse from the 
overall object to its subobjects

Skeleton based indexing hierarchical indexing (AABB tree)original vessel

3D Spatial Indexing



Proximity Estimation

3D Query Engine

• Three-step proximity estimation query pipeline using structural 
indexing and R*-tree indexing

– Use structural index (AABB) of vessels in low LOD

– Find nearest neighbor using R*-Tree to index MBBs from above structural index

– Perform accurate calculation of distances using structural index of vessels at high 
LOD (very few)

• Only small number of vessels with high LOD will be retrieved

Nuclei

Blood vessels

AABB-tree on vessels 

at high LOD and 

distance computation

Vessel hierarchy 
AABB 

On low LOD

R-Tree on 

AABB nodes

Nearest 

Neighbour

search

MBBs of Nuclei

Load and 

decompress geometry 

data  into memory 

(interactive mode)



Performance Comparison between iSPEED and Hadoop-GIS 3D 

Spatial join

Performance

Spatial proximity approximation



Performance and Accuracy vs Level of Detail (Spatial Join)

Execution time vs LOD Error vs LOD

Performance



Scalability of iSPEED

Proximity approximationSpatial join

Performance



3D Compression Revisited

• A polyhedron can be compressed to represent the original object with 
lower precision

• The compression can be conducted by removing surface elements

Ln
Ln-1

…

…

L0

3D Compression



v0

v1 v2

v3
v4

v1 v2

v4

v0

v1 v2

v3

v4

v0

High LOD Low LOD> High LOD Low LOD= High LOD Low LOD<

normal vector

acute

v3

normal vector

right

normal vector

obtuse

Cut of a solid part Has no impact Fill a pit

Protruding vertex Recessing vertex

3D Compression Revisited: Impacts of Removing a Vertex

3D Compression



Progressive Protruding-Vertex Pruning Compression (PPVP)

• We enforce that only protruding vertices can be removed: Progressive 
Protruding-Vertex Pruning Compression 

• If a lower LOD of two objects intersect: 

→ the higher LOD will intersect

• The distance between lower LOD is always > the distance at higher 
LOD

3DPro



Filter-Progressive-Refine Spatial Querying Paradigm

Filter-Progressive-Refine Paradigm

Spatial filtering 

with MBB

Geometry refinement 

& spatial measurement

MBB of dataset1

MBB of dataset 2

Load in-memory 

compressed data

Decompress 

geometry data

R*-tree on dataset2

R*-tree on dataset1

Filter-Refine Paradigm

3DPro



3DPro: Progressive 3D Spatial Data Representation and 
Queries

• Progressive Protruding-Vertex Pruning Compression 

→ reduce storage and I/O

• Shape aware indexing with partitioning for complex geometries like 
vessels 

→ further address shape complexity

• Filter-progressive-refine spatial querying: early return of query results at 
lower LOD 

→ minimize computation complexity

• Parallelized processing at both object level and intra-object level 

→ high throughput

• In-memory based data management 

→ minimize I/O

3DPro



Shape Aware Indexing with Partitioning

3D vessel meshes Skeleton of vessels

3D vessel Shape aware MBBs

3DPro



GPU Acceleration for Collison Detection/Intersection

• Inter-object parallelism: each object (cell) can be evaluated 
independently, ideal for GPU

• Intra-object parallelism: each object has multiple surfaces, and distance 
computation can be evaluated for each surface

thread 1 thread 1 thread n…….

GPU Cores

Object based parallelization (CPU or GPU) Surface level parallelization

3DPro



• 4.4X, 13.8X, 880X, 37.4X, 264X faster

Performance

3DPro



GLINT: GPU-based Real-Time Contact Tracing

• Contact tracing is an essential tool to control the spread of infectious 
diseases like COVID-19

• A person is considered at risk if the person is within a specific distance 
(spatial constraint) for a specific period of time (temporal constraint)

• To achieve accurate retrieval of human traces, the locations should be 
sampled frequently (sub-second level) but not all archived

o 12.7TB data with 1M people sampled per second

t0 t1 t2 t3 t4

O0

O1

O2

O3

GLINT: a GPU-based real-time contact tracing 
system that can achieve sub-second response 
for contact tracing data processing for a 
population at tens of millions scale

Other projects [SIGSPATIL2021]



GLINT

• Dynamic indexing of moving objects using an 
adaptive partitioning schema on GPU with very 
low overhead

• GPU optimized refining

• Temporal evaluation with GPU-based hash table

Other projects



Ongoing Project: Multi-Modal Multl-Scale Integrated Spatial 
and Image Analytics

• Understand complex relationships of cells and their functions

• Incorporate spatial knowledge into images for multi-modal predictions

Integrate spatial big data management, high performance computing, computational geometry, 

computer vision and machine learning
Ongoing projects



Source Codes

• PAIS: http://bmidb.cs.stonybrook.edu/pais/

Parallel spatial database for whole slide imaging

• Hadoop-GIS: http://bmidb.cs.stonybrook.edu/hadoopgis/index

Hadoop based spatial querying system

• SparkGIS: http://bmidb.cs.stonybrook.edu/sparkgis/index

Spark based spatial querying system

• iSPEED: http://bmidb.cs.stonybrook.edu/ispeed/index

3D spatial querying system

• 3DPro: http://bmidb.cs.stonybrook.edu/3dpro/index

Progressive 3D querying system

• IDEAL: http://bmidb.cs.stonybrook.edu/ideal/index

Hybrid vector-raster model for complex polygons

• GLINT: http://bmidb.cs.stonybrook.edu/glint/index

GPU-based contact tracing

http://bmidb.cs.stonybrook.edu/pais/
http://bmidb.cs.stonybrook.edu/hadoopgis/index
http://bmidb.cs.stonybrook.edu/sparkgis/index
http://bmidb.cs.stonybrook.edu/ispeed/index
http://bmidb.cs.stonybrook.edu/3dpro/index
http://bmidb.cs.stonybrook.edu/ideal/index
http://bmidb.cs.stonybrook.edu/glint/index
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Ph.D. students (current and past)

Collaborators

Jun Kong

GSU and Emory



Questions?

fusheng.wang@stonybrook.edu

http://www.cs.stonybrook.edu/~fuswang

Look for students working on advanced projects, 
Ph.D. student to work on big spatial big data systems

http://www.cs.stonybrook.edu/~fuswang

