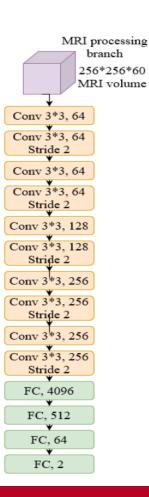


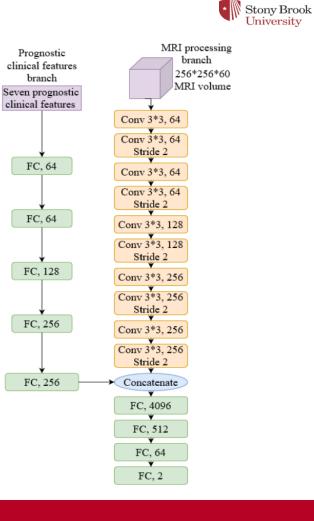
Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using Deep Learning with Integrative Imaging, Molecular and Demographic Data

Hongyi Duanmu Department of Computer Science, Stony Brook University


Motivations & Challenges

- Early prediction on PCR to Neoadjuvant chemotherapy can help in treatment planning.
- Main problem we attempt to solve is:
 - CNN system can predict PCR before the chemotherapy
 - CNN system can process MR images, Molecular and Demographic Data
 - What is the best way in CNN to combine different resources of information

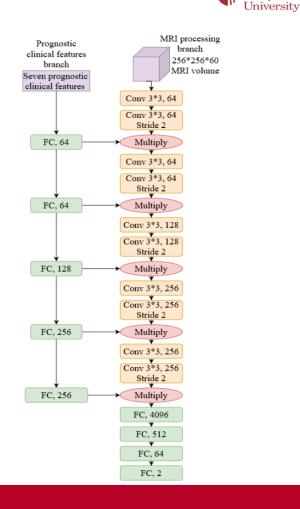
Methods – Image-only model


- The basic CNN model for processing the MR images.
- VGG-like model consisting of 10 convolutional layers.
- Replace maxpooling layer with convolutional layer with stride set as 2.
- Four fully connected layers at the end are in charge of the final prediction.

Stony Brook University

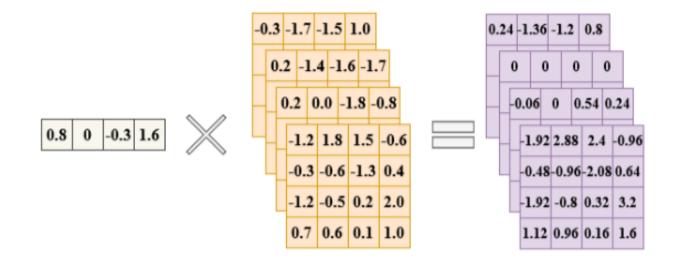
Methods – Parallel model

- Based on the basic image-only model, we proposed one more system to integrate non-imaging information into the CNN.
- One more branch consisting of five fully connected layers to process non-imaging data.
- Features extracted from imaging module and non-imaging module are concatenated before the last four fully connected layers.


Methods – **Problems of parallel model**

- 1. P: Only one connection is established between imaging and non-imaging branches.
 - A: Multiple connections should be built in different intermediate levels.
- 2. P: Two branches are independent with each other.
 - A: Simulating radiologists reference imaging and non-imaging data at the same time, more interaction between two branches are needed.
- 3. P: Concatenation cannot solve the problem that features are in different scales.
 - A: Rather than simply putting two features together, other operations like multiplication can be deployed into the system.

Methods – Interactive model


- To solve the problem discussed, we have the final version of the system.
- In the intermediate levels of the system, we deployed 5 connections between two branches.
- The connection is operated by channel-wise multiplication.
- By channel-wise multiplication, non-imaging features will guide the imaging branch in feature maps extraction and selection.

Stony Brook

Methods – Channel-wise Multiply

Features from non-imaging branch will emphasis or restrain the corresponding feature maps from imaging branch

Dataset

- 112 patients from I-SPY-1 TRIAL (2002-2006)
- stage 2 or 3 breast cancer
- breast tumors at least 3 cm in size
- T1 post-contrast breast MR images obtained at preneoadjuvant chemotherapy
- Seven non-imaging features

Parameter	Description	Data Type
Age	Patient Age (Years)	Demographic
Race	1=Caucasian 2=African American 3=Asian 4=Native Hawaiian/Pacific Islander 5=American Indian/Alaskan Native 6=Multiple race	Demographic
Estrogen Receptor (ER)	0=Negative 1=Positive 2=Indeterminate	Molecular
Progesterone Receptor (PR)	0=Negative 1=Positive 2=Indeterminate	Molecular
HER2 Status	0=Negative 1=Positive -1=indeterminate or not done	Molecular
3-level HR/HER2 category	1=HR Positive, HER2 Negative 2=HER2 Positive 3=Triple Negative	Molecular
Ki-67	$\begin{array}{l} 1 = < 10\% \\ 2 = 10 - 20\% \\ 3 = > 20\% \end{array}$	Molecular

Stony Brook University

Results

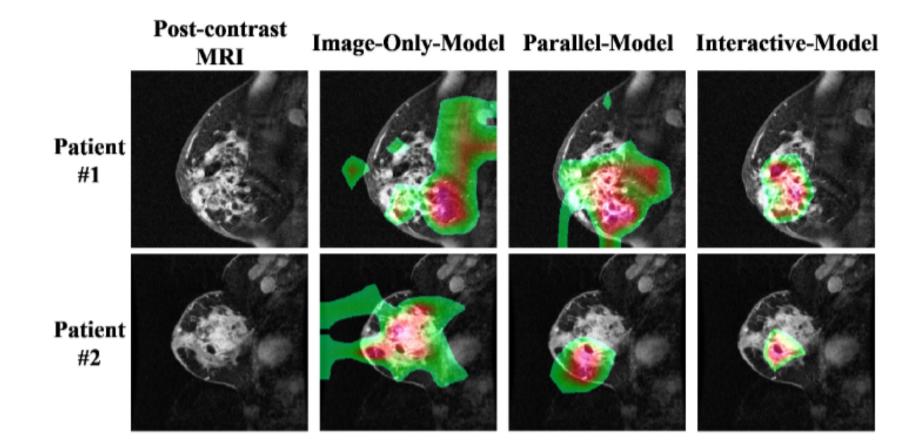


Table 2. Prediction performance comparison.

	Imaging-Only-Model	Parallel-Model	Interactive-Model
Accuracy	0.7407	0.7846	0.8300
AUC	0.5758	0.5871	0.8035
Sensitivity	0.2229	0.4000	0.6822
Specificity	0.9222	0.8929	0.8822
F1 score	0.3590	0.5525	0.7694

Results

Limits & Future Work

- A larger dataset should be used to train the model to improve generalizability of the model.
- We also plan to incorporate multiple time points during NAC instead of only pre-treatment time point.
- More modality of MRI (i.e., T2-weighted MRI and diffusion-weighted MRI) should be incorporated into the system.